Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
J Biomol Struct Dyn ; : 1-14, 2022 Aug 23.
Article in English | MEDLINE | ID: covidwho-1995421

ABSTRACT

The pandemic of coronavirus disease is caused by the SARS-CoV-2 which is considered a global health issue. The main protease of COVID 19 (Mpro) has an important role in viral multiplication in the host cell. Inhibiting Mpro is a novel approach to drug discovery and development. Also, transmembrane serine proteases (TMPSS2) facilitate viral activation by cleavage S glycoproteins, thus considered one of the essential host factors for COVID-19 pathogenicity. Computational tools were widely used to reduce time and costs in search of effective inhibitors. A chemical library that contains over two million molecules was virtually screened against TMPRSS2. Also, XP docking for the top hits was screened against (Mpro) to identify dual-target inhibitors. Furthermore, MM-GBSA and predictive ADMET were performed. The top hits were further studied through density functional theory (DFT) calculation and showed good binding to the active sites. Moreover, molecular dynamics (MD) for the top hits were performed which gave information about the stability of the protein-ligand complex during the simulation period. This study has led to the discovery of potential dual-target inhibitors Z751959696, Z751954014, and Z56784282 for COVID-19 with acceptable pharmacokinetic properties. The outcome of this study can participate in the development of novel inhibitors to defeat SARS-CoV-2.Communicated by Ramaswamy H. Sarma.

2.
Struct Chem ; 33(5): 1553-1567, 2022.
Article in English | MEDLINE | ID: covidwho-1906462

ABSTRACT

A virus called severe acute respiratory distress syndrome coronavirus type 2 (SARS-CoV-2) is the causing organism of coronavirus disease 2019 (COVID-19), which has severely affected human life and threatened public health. The pandemic took millions of lives worldwide and caused serious negative effects on human society and the economy. SARS-CoV-2 main protease (Mpro) and RNA-dependent RNA polymerase (RdRp) are interesting targets due to their crucial role in viral replication and growth. Since there is only one approved therapy for COVID-19, drug repurposing is a promising approach to finding molecules with potential activity against COVID-19 in a short time and at minimal cost. In this study, virtual screening was performed on the ChEMBL library containing 9923 FDA-approved drugs, using various docking filters with different accuracy. The best drugs with the highest docking scores were further examined for molecular dynamics (MD) studies and MM-GBSA calculations. The results of this study suggest that nadide, cangrelor and denufosol are promising potential candidates against COVID-19. Further in vitro, preclinical and clinical studies of these candidates would help to discover safe and effective anti-COVID-19 drugs.

3.
Biochemistry and biophysics reports ; 29:101225-101225, 2022.
Article in English | EuropePMC | ID: covidwho-1661333

ABSTRACT

The current novel corona virus illness (COVID-19) is a developing viral disease that was discovered in 2019. There is currently no viable therapeutic strategy for this illness management. Because traditional medication development and discovery has lagged behind the threat of emerging and re-emerging illnesses like Ebola, MERS-CoV, and, more recently, SARS-CoV-2. Drug developers began to consider drug repurposing (or repositioning) as a viable option to the more traditional drug development method. The goal of drug repurposing is to uncover new uses for an approved or investigational medicine that aren't related to its original use. The main benefits of this strategy are that there is less developmental risk and that it takes less time because the safety and pharmacologic requirements are met. The main protease (Mpro) of corona viruses is one of the well-studied and appealing therapeutic targets. As a result, the current research examines the molecular docking of Mpro (PDB ID: 5R81) conjugated repurposed drugs. 12,432 approved drugs were collected from ChEMBL and drugbank libraries, and docked separately into the receptor grid created on 5R81, using the three phases of molecular docking including high throughput virtual screening (HTVS), standard precision (SP), and extra precision (XP). Based on docking scores and MM-GBSA binding free energy calculation, top three drugs (kanamycin, sulfinalol and carvedilol) were chosen for further analyses for molecular dynamic simulations. Graphical Image 1

SELECTION OF CITATIONS
SEARCH DETAIL